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INTRODUCTION

Reliable census techniques and accurate assessments
of animal densities are fundamental to wildlife re-
search, monitoring and estimation of population size
(Braun 2005). Vessel-based transect surveys have been
a part of seabird research for nearly a century (Jes-
persen 1924, Wynne-Edwards 1935) and a mainstay of
seabird biology since the 1960s (Brown et al. 1974,
Tasker et al. 1984). Transect surveys using standard-
ized protocols (Tasker et al. 1984) have contributed
substantially to understanding seabird ecology (>150

peer-reviewed publications found with a Web-of-
Science search). Despite their ubiquitous use in sea-
bird research, vessel-based transects are not without
methodological problems and biases. This is of partic-
ular interest when monitoring populations of threat-
ened species or in conducting environmental impact
studies for seabirds at sea. Of central importance are
factors affecting accuracy of density and abundance
estimates (e.g. Hyrenbach 2001, Spear et al. 2004).

In all studies, some birds on the water are not de-
tected, leading to underestimates of seabird densities.
With standardized strip-transect surveys (Tasker et
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al. 1984) the basic assumption is that all objects within
the strip are detected. However, distance sampling
methodology has shown empirically that this assump-
tion is usually violated because individuals closer to
the transect line have a higher probability of detection
than those further from the line (Buckland et al. 2001,
2004). Rather than counting organisms within a pre-
determined transect width, distance sampling records
the perpendicular distance of individuals (or clusters/
flocks) from the transect line. Based on these distances,
Distance software (Thomas et al. 2006) provides esti-
mates of the proportions of organisms missed during
surveys, thus allowing more accurate density esti-
mates.

Marine mammal and sea turtle researchers have
been developing and employing distance sampling
protocols for decades (Burnham et al. 1980, Laake et al.
1997, Beavers & Ramsey 1998) which have now
become the backbone of robust density and population
estimates (Forcada et al. 2004, Slooten et al. 2004,
Gomez de Segura et al. 2006). Distance sampling has
been advocated to improve the reliability of bird sur-
veys (Rosenstock et al. 2002, Thompson 2002), yet
transect surveys for marine birds have been slow to
adopt this method. The one exception has been with
marbled murrelets (Brachyramphus marmoratus) where
distance sampling has been readily used (Becker et
al. 1997, Evans Mack et al. 2002, Peery et al. 2004,
2006, 2007). Newer monitoring programs have been
amenable to adopting distance sampling protocols
(RIC 2001, Raphael et al. 2007), but established and
longer-term seabird survey programs have used strip-
transect and are hesitant to change protocols (Pyle
2007). Several European programs (Komdeur et al.
1992, Camphuysen et al. 2004) and one Canadian
program (Eastern Canadian Seabirds At Sea) have
adopted distance sampling protocols for seabird sur-
veys.

Distance sampling methodology has been thor-
oughly developed (Buckland et al. 2001, 2004) and
evaluated (Kulbicki & Sarramegna 1999, le Mar et al.
2001, Norvell et al. 2003). Our goal is not to validate
the technique further but rather to demonstrate its
relevance for seabird surveys and to examine the
variability in detection probabilities for a variety of
species and conditions. We assessed the effects of
year, observer bias, sea state, and cluster size on
seabird detection functions. We compared parameter
estimates showing the proportion of birds detected
for fixed-width strip transects of 200 or 300 m (100 or
150 m on either side of the boat). The results and
methods are relevant for other vessel-based surveyors
who wish to use distance sampling to improve the
accuracy of seabird density estimates, including those
based on strip transects.

MATERIALS AND METHODS

Study area and organisms. Line-transect surveys
were conducted between 20 May and 8 August in 3
years (2004–2006). The study area was located in the
West Coast Trail unit of Pacific Rim National Park on
the southwestern coast of Vancouver Island, British
Columbia, Canada (Ronconi & Burger 2008). This is a
65 km stretch of coast exposed to the Pacific Ocean. All
surveys were conducted within 2 km from land in
waters <40 m deep.

Sample sizes for distance sampling analysis were
sufficient to investigate 6 taxa: 4 Alcidae (marbled
murrelet, rhinoceros auklet Cerorhinca monocerata,
common murre Uria aalge, pigeon guillemot Cepphus
columba), one cormorant (pelagic cormorant Phalacro-
corax pelagicus), and gulls (glaucous-winged gull
Larus glaucescens; and California gull L. californicus;
pooled as Larus spp.). This range of species provides a
representative array for distance sampling analysis
typical of the communities encountered in coastal
waters of the northern hemisphere: pursuit divers
(alcids/cormorants) vs. surface feeders (gulls), small
(murrelets/guillemot/auklet) vs. large birds (murre/
cormorant/gull), and drab (murrelet/auklet) vs. con-
spicuous alcids (guillemot/murre).

Survey methods. All surveys were conducted from a
5 m rigid-hull inflatable boat traveling at approxi-
mately 10 km h–1. Observer height was 1.5 to 2 m
above the water surface. Surveys were conducted with
paired observers (Evans Mack et al. 2002) at the bow,
each scanning one side of the transect line from
directly ahead to 90o abeam. Search pattern included
equal effort through the 90o arc and out to about 300 m
from the transect line. Although flying birds were
recorded as well, search effort emphasized birds on
the water because most species examined were pursuit
divers. Observers on each side were independent but
communicated to each other about birds near or on the
transect line so as not to double count these groups. All
observations were recorded on hand-held audio
recorders and later transcribed.

Distance sampling analysis was restricted to birds on
the water. Surveys followed distance sampling proto-
cols (Buckland et al. 2001) recording bird clusters
(individual birds or groups of birds of the same spe-
cies), perpendicular distance from the transect line
(estimated at the time of first detection), and cluster
size. Although Buckland et al. (2001) recommend re-
cording angles to birds and distance at first detection
(radial distance), we estimated perpendicular distance
from the transect line which, for murrelets, is as accu-
rate as radial distances (Raphael et al. 1999). Birds
were considered to be in clusters if they were within
2 m of each other, or if they were slightly further apart
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and were foraging together or exhibiting similar be-
havioral cues (Becker et al. 1997). Observers were
trained in distance estimation by towing a line with 3
buoys spaced at 10, 25, and 50 m behind the boat.
Other calibration techniques with hand-held calipers
(Heinemann 1981) are not well suited for small vessels
with observer height close to sea level. The buoy line
was used for the first 3 weeks each year, until ob-
servers were competent at estimation to ±10 m, and
used again periodically several days per month. This
training method emphasized consistency among ob-
servers in distance estimation. There were multiple
observers each year (2 in 2004 and 3 in 2005 and 2006)
with one observer (R.A.R.) consistent in all years.

During each survey we collected environmental data
on viewing conditions, and restricted surveys to peri-
ods of low swell (<1.5 m) and low winds (Beaufort sea
state ≤ 3). For analysis we coded sea state into 2 cate-
gories as per Becker et al. (1997): excellent/very good
(Beaufort 0 to 1) and good/fair (Beaufort 2 to 3). Most
observations were collected on days without fog and
on a few days when fog was patchy and visibility to at
least 100 m. Glare had little effect on data collection;
morning glare was minimal because transects were
close to shore where the sun rose over land and few
transects were conducted late in the day when late
afternoon glare was a problem.

Transects layout included 2 designs: zig-zags and
parallel lines perpendicular to the shore. The zig-zag
transect layout was systematic to cover the length of
the study area and was bounded by the 5 and 20 m
depth contours, the latter delineating the seaward park
boundary. Depending on shoreline complexity and
navigation hazards, zig-zag legs were on average
1.6 km long (range 0.9 to 2.9 km) and typically bisected
the coastline at 45o angles. Total zig-zag length was
77 km which was surveyed 5 to 6 times in 2005 and
2006. In some sectors of the study area, we established
a series of parallel transects, spaced 500 m apart and
oriented perpendicular to shore. These transects were
bounded by the 5 and 40 m depth contours (approx. 1
to 2 km offshore). This design was used at one site
in 2004 (total length 13.4 km; 7 parallel legs) and
expanded to 6 other sites in 2005 and 2006 (mean
length 7.0 km, range 5.2 to 8.3 km; 3 to 4 parallel legs).
All data were pooled for analysis.

Calculating densities from transects. We present a
basic equation useful for the interpretation of results in
this study (see also Buckland et al. 2001 for complete
distance sampling equations). The basic estimate of
densityD̂ for objects in a study area can be calculated
by the number of objects counted n divided by the area
surveyed a. In the case of a strip-transect line, the area
surveyed is equal to the strip width 2w multiplied by
the total length L of the transect. Here w represents the

width on one side of the boat (e.g. 150 m) and is multi-
plied by 2 when observers are counting birds on both
sides of the boat.

(1)

With line transects, however, not all of the objects
within the survey area a are detected, thus P̂a, esti-
mated with the Distance software, is included to repre-
sent the proportion of birds detected within the survey
area. When the objects are groups of organisms, an
estimate of mean group size E(s) is also introduced as
a multiplier in the equation:

(2)

Buckland et al. (2001) present several methods for
unbiased estimates of E(s). We used the regression
estimator which estimates mean cluster size by the
predicted mean cluster size on the transect line, where
object detection is certain (Buckland et al. 2001).

Other multipliers may also be included in the equa-
tion to correct discrepancies in the detection function.
One important multiplier is g(0), the probability of
detecting a bird on or near the transect line. A critical
assumption of distance sampling is that all objects on
or near the transect line are detected, i.e. g(0) = 1, how-
ever if this assumption is not met then g(0) can be
introduced into the equation as:

(3)

Assumptions of distance sampling. For effective dis-
tance sampling analysis, there are 3 basic assumptions
that should not be violated (Buckland et al. 2001,
Rosenstock et al. 2002).

Assumption 1: all birds on the transect line are de-
tected: g(0) = 1, where g(0) is the probability of detect-
ing birds at distance zero. Few studies validate this
critical assumption (Bächler & Liechti 2007). There
are 2 reasons why diving birds, or other air-breathing
marine divers, may not be detected: (1) availability
bias (animals are missed because they are submerged)
and (2) perception bias (visible animals are missed for
other reasons e.g. sea state, distance) (Marsh & Sinclair
1989, Laake et al. 1997). Availability bias should be
minimal for seabirds which spend a high proportion of
time visible on the surface, compared to marine mam-
mals. Average dive times for murrelets are only 25 s
(Jodice & Collopy 1999), therefore at our boat speed
(10 km h–1), birds that dove <70 m ahead of the boat
would resurface after the boat had passed. We expect
to be able to detect most birds within this distance
before they dive. Average dive times for other species
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are similar or slightly longer, but these are larger and
more conspicuous species. Some birds dive in response
to approaching boats, thus additionally affecting avail-
ability bias. Murrelets typically dive when a boat
approaches closer than 40 m (Bellefleur et al. 2009),
but at this response distance we expect that most birds
were detected prior to escape by diving. Evans Mack
et al. (2002) tested visibility bias for marbled murrelets
finding that g(0) ranged from 0.84–0.93 with double
observers. However, average boat speed in their study
was (20 km h–1), twice that of our study, therefore, g(0)
may be closer to 1 in our study. Nevertheless, we con-
ducted a test of potential sea state effects on g(0) (see
‘Data analysis’ below).

Assumption 2: birds are detected prior to evasive
movements. We recorded perpendicular distance to
the transect line at the time of first detections, there-
fore typically before the boat was close enough to
cause evasive movements. Elsewhere, murrelets typi-
cally moved <10 m before detection for distance sam-
pling (Brennan 2000).

Assumption 3: distances are measured accurately.
We maintained the accuracy of distance estimation
by thorough and repeated training (‘Survey methods’,
above), but because distances in the field were
rounded to 10 m increments, our precision is limited to
this scale, and therefore distances were grouped into
bins for analysis (Buckland et al. 2001).

Data analysis. Data were analyzed using Distance
5.0 Release 2 (Thomas et al. 2006) and the multiple
covariates distance sampling (MCDS) engine. We
followed analysis guidelines outlined by Buckland et
al. (2001) which include exploratory analysis, model
selection, and final analysis and inference.

Exploratory analysis included plotting of histograms
of various groupings (distance bins), truncation of data,
and inspection of cluster-size bias. Histograms of vari-
ous bin sizes were constructed in SPSS 15.0. The mini-
mum bin size of 10 m indicated heaping or rounding
errors, but bins of 20 m increments (Fig. 1) showed a
broad shoulder (most detections near the transect line),
little evidence of evasive movements, and evidence of
outliers beyond 150 m (Buckland et al. 2001). Conse-
quently analyses were done using distance bins of
20 m (0–20, 21–40, etc.). Distance analysis allows for
uneven bin sizes when required and the final bin was
only 10 m wide (141 to 150 m) to accommodate the
selected truncation distance (see below).

Buckland et al. (2001) recommend data truncation to
eliminate outliers and improve model fitting. We
selected a truncation of 150 m on either side of the boat
(i.e. overall a 300 m band) for 2 reasons. First, 150 m
falls within the range of truncation from previous stud-
ies using distance sampling with murrelets (160 m,
Becker et al. 1997; 120 m, Peery et al. 2006). Second,

a 150 m width on both sides has been the standard for
annual surveys conducted by Parks Canada in our
study area since 1993 (Burger et al. 2008) and for other
seabird surveys off the British Columbia coast (Burger
et al. 2004). Note that 300 m bands (typically on one
side of the vessel) have been the standard protocol
(Tasker et al. 1984), but this distance was selected
particularly to count flying birds. A 150 m wide tran-
sect is more appropriate for small boats (this study) and
reduces the scanning time in areas far way from the
boat, thus decreasing the likelihood of missing birds
near the midline.

Cluster-size bias frequently occurs in survey work
because at greater distances from the transect line
larger clusters of birds are more easily detected than
smaller ones (Buckland et al. 2001). Unbiased estima-
tion of mean cluster size is essential for accurate den-
sity estimation. We tested for cluster-size bias by look-
ing at correlations between cluster size and distance
from transect line for different truncation distances
(300, 150, 100, 50 m) using SPSS 15.0. When cluster-
size bias was detected, regression techniques were
used to determine an unbiased cluster size estimate for
density calculations in subsequent analyses (Buckland
et al. 2001).

The program Distance allows several key functions
and series expansion terms for modeling the detection
function. For each species, we tested the following
models (and series expansion terms) which may be
used in MCDS: half-normal (cosine or hermite polyno-
mial) and hazard-rate models (cosine or simple poly-
nomial). Model fit and ranking was assessed using
Akaike’s Information Criterion with correction for small
samples sizes (AICc) (Burnham & Anderson 2002).
For all species, except pigeon guillemot, hazard-rate
models provided the best fit to the data (lowest AICc

score). For pigeon guillemots, the half-normal model fit
best though the hazard-rate model also fit the data
well (ΔAICc < 2). For gulls, cormorants and guillemots,
series expansion terms were not included in the best
fit model. Cosine series expansion was included in the
best fit model for murrelets and simple-polynomial
terms were included in the best fit models for auklets
and murres. Hazard-rate models with or without ap-
propriate series expansion terms were used for sub-
sequent analyses.

MCDS analyses were conducted to test for effects of
the covariates year, observers, sea state and cluster
size on the estimation of detection functions for each
species. The year covariate was assessed at 3 levels
for murrelets (2004,2005,2006), 2 levels for murres
and cormorants (2005,2006), and not tested for other
species due to sample size constraints. We excluded
one observer (Obs 2) from guillemot, cormorant and
gull models because n < 5 observations for each spe-
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cies. Sea state was coded at 2 levels for analysis:
Beaufort sea states 0 to 1 and 2 to 3 (described in ‘Sur-
vey methods’, above). Because fitting the detection
function with multiple covariates can be computation-
ally difficult, often resulting in model convergence
failure, we followed steps outlined in the Distance
User’s Manual (p. 117–120) to facilitate convergence:
(1) A scale parameter was used and initial models
were run with the number of adjustment terms manu-
ally set to zero. (2) Initial models included a null
model (no covariates) and univariate models with
each covariate on its own. (3) Starting with the sim-

plest model (null), covariates were added one at a
time and covariates which gave the best fit (lowest
AICc) were selected. Forward stepwise selection was
conducted by adding additional covariates until there
was no decrease in AICc. (4) In each step of the model-
building procedure, parameter starting values are set
manually from the estimates of the previous model.
(5) Finally, to check model convergence, MCDS mod-
els were compared to a Conventional Distance Sam-
pling (CDS) model with no covariates but the same
key function plus adjustment terms. MCDS models
should have a likelihood that is as high, or higher,
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than the CDS model. This procedure was carried out
for each species, and model fit was assessed with
AICc, ΔAICc (the difference in AICc between a fitted
model and the lowest AICc of any model) and AICcw
(the AICc weight, which is the evidence in favor of
one model being the actual best model given the set
of candidate models which were evaluated) (Burnham
& Anderson 2002).

We developed estimates of P̂a which are relevant to
commonly used widths in fixed-width strip transects
surveys of seabirds: 300 m (150 m truncation on both
sides) and 200 m (100 m both sides; e.g. Agler et al.
1998). Parameter estimates of P̂a were obtained for
global models (all data and the best fit model) and
individual covariate levels using post-stratification by
the covariates.

Finally, we assessed the potential effects of sea state
on g(0). Lower murrelet densities with increased
wave height suggests that g(0) may be reduced by
increased sea states (Becker et al. 1997). We com-
pared murrelet encounter rates (n/L = number of clus-
ters counted per distance traveled) for different sea
state conditions (Beaufort sea state 0 to 3). Encounter
rates were calculated for each sea state code (if >1 km
of survey was conducted at that sea state) on each
survey day (unit of analysis). Detection of birds should
remain certain or nearly certain at small distances
from the line (Buckland et al. 2001), therefore we lim-
ited the assessment of encounter rates to birds
detected near the line (≤ 60 m for murrelets and mur-
res, ≤ 80 m for cormorants) which corresponds with
the ‘shoulder’ of the histograms (Fig. 1), akin to the
distance of ‘perfect’ detection (Kissling & Garton
2006). Analysis of variance (ANOVA) was used to
compare encounter rates under different sea-state
conditions for species with sufficient sample size
(murrelet, murre, cormorant).

RESULTS

Over 3 yr we conducted 1429 km of line transect
surveys (2004 = 105 km; 2005 = 631 km; 2006 =
693 km). We recorded >8000 clusters of seabirds,
70% of which were marbled murrelets, and most
were detected within 80 m of the transect line
(Fig. 1). Three species, pigeon guillemot, pelagic cor-
morant and gulls, showed some decrease in detection
for intervals closer to the transect line, suggesting
that these 2 species may exhibit evasive behaviour
from approaching boats. However, because the de-
crease in detections close to the line was not extreme
and these are fairly conspicuous species, we assume
that most birds were detected before any evasive
movements.

Cluster-size bias

Based on distance vs. cluster-size correlations,
pigeon guillemots and pelagic cormorants showed no
evidence of cluster-size bias, and common murres
and gulls showed no bias when data were truncated
at ≤150 m (Table 1). Marbled murrelets and rhino-
ceros auklets showed extensive cluster-size bias at
most truncation distances; this bias was only elimi-
nated for data <50 m from the boat. Despite these
results, cluster size was identified as an important
covariate for pelagic cormorants and pigeon guille-
mots (Table 2).

Model selection and covariates

MCDS tested the influence of potential covariates on
the fit of detection functions. Table 2 summarizes fit of
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Table 1. Evaluation of cluster-size bias when sighting seabird
clusters/groups from line-transect surveys. Effects of data
truncation on mean cluster size. Pearson’s r correlations test
the correlation between cluster size and cluster distance from
transect line for data truncated at different distances. Signifi-
cance of Pearson’s r with Bonferroni adjustments: *<0.05 and 

**<0.01

Species and truncation n Mean cluster Pearson’s
distance (m) size ± SE r

Marbled murrelet
300 5871 2.09 ± 0.04 0.139*
150 5738 2.05 ± 0.04 0.103**
100 5369 1.99 ± 0.03 0.119**
50 3781 1.83 ± 0.04 0.028

Rhinoceros auklet
300 309 1.69 ± 0.09 0.251**
150 307 1.66 ± 0.09 0.179**
100 291 1.63 ± 0.08 0.148*
50 204 1.46 ± 0.07 –0.022

Pigeon guillemot
300 213 1.22 ± 0.04 0.088
150 207 1.22 ± 0.04 0.112
100 192 1.22 ± 0.04 0.178
50 140 1.17 ± 0.03 0.068

Common murre
300 1008 2.13 ± 0.21 0.342**
150 971 1.68 ± 0.11 0.075
100 917 1.64 ± 0.11 0.054
50 665 1.51 ± 0.10 0.042

Pelagic cormorant
300 800 1.23 ± 0.03 0.074
150 733 1.20 ± 0.03 0.002
100 630 1.18 ± 0.03 –0.037
50 359 1.17 ± 0.04 –0.113

Larus spp.
300 145 19.88 ± 4.25 0.229*
150 133 15.71 ± 3.29 0.032
100 111 16.79 ± 3.81 0.111
50 77 16.08 ± 4.06 0.100
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models, comparing models with and without covari-
ates. For 3 species (murres, auklets, gulls) the best fit
model contained no covariates (null model). Observer
was included as a covariate in the best fit model for
murrelets and guillemots, and year was included in the
best model for murrelets and cormorants. CDS models
were included in model comparisons to check for

model convergence, i.e. MCDS models should have a
likelihood that is as high, or higher, than the CDS
model (i.e. AICc of CDS model is ≤ AICc of best fit
MCDS model). Thus, model convergence was achieved
for all species except common murre (Table 3), which
nonetheless showed no improvement on the null
model by addition of covariates.
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Table 2. Summary of detection function model fits with AICc model selection (see ‘Data analysis’ for descriptions of Akaike’s sta-
tistics) and estimated proportion of bird clusters detected P̂a along the transect. Multiple Covariate Distance Sampling (MCDS)
analysis used hazard-rate models with no adjustment terms and stepwise addition of covariates. Conventional Distance Sampling
(CDS) models were fit to check model convergence. See ‘Data analysis’ for details. K = total number of parameters in the model. 

yr: year; obs: observer; ss: sea state; cs: cluster size

Species Model K AICc ΔAICc ΔAICcw P̂a

Marble murrelet (yr, obs) 9 19485.96 0.00 0.546 0.421
(yr, obs, ss) 10 19487.69 1.73 0.230 0.419
(yr, obs, cs) 10 19487.81 1.85 0.217 0.420
CDS model (no covariates) 4 19494.87 8.91 0.006 0.410
(yr) 4 19550.11 64.15 0.000 0.478
(yr, cs) 5 19552.14 66.18 0.000 0.478
(yr, ss) 5 19552.14 66.18 0.000 0.478
(obs) 7 19553.73 67.77 0.000 0.479
Null (no covariates) 2 19554.21 68.25 0.000 0.469
(cs) 3 19555.89 69.93 0.000 0.471
(ss) 3 19556.09 70.13 0.000 0.469

Common murre CDS model (no covariates) 6 3145.73 0.00 0.918 0.411
Null (no covariates) 2 3152.09 6.36 0.038 0.451
(yr) 3 3153.95 8.22 0.015 0.456
(cs) 3 3154.08 8.35 0.014 0.452
(ss) 3 3154.08 8.35 0.014 0.451
(obs) 7 3161.53 15.79 0.000 0.457

Pelagic cormorant (yr, cs) 4 2749.93 0.00 0.716 0.694
(yr, cs, ss) 5 2751.96 2.03 0.260 0.694
(yr, cs, obs) 8 2757.01 7.08 0.021 0.693
(yr) 3 2761.55 11.61 0.002 0.676
(yr, ss) 4 2763.55 13.62 0.001 0.676
(yr, obs) 7 2764.68 14.75 0.000 0.698
(obs) 6 2771.90 21.97 0.000 0.679
CDS model (no covariates) 6 2790.76 40.83 0.000 0.536
Null (no covariates) 2 2801.72 51.79 0.000 0.677
(ss) 3 2803.69 53.76 0.000 0.677
(cs) 3 2803.69 53.76 0.000 0.677

Rhinoceros auklet CDS model (no covariates) 2 1040.71 0.00 0.365 0.425
Null (no covariates) 2 1040.71 0.00 0.365 0.425
(cs) 3 1042.72 2.01 0.134 0.427
(ss) 3 1042.73 2.01 0.133 0.425
(obs) 7 1050.90 10.18 0.002 0.430

Pigeon guillemot (obs, cs) 7 678.90 0.00 0.490 0.465
(obs, ss) 7 679.80 0.90 0.313 0.471
(obs, cs, ss) 8 681.06 2.16 0.166 0.467
(obs) 6 684.48 5.58 0.030 0.396
(cs) 3 709.77 30.87 0.000 0.512
CDS model (no covariates) 2 709.88 30.98 0.000 0.513
Null (no covariates) 2 709.88 30.98 0.000 0.513
(ss) 3 711.93 33.03 0.000 0.515

Larus spp. CDS model (no covariates) 2 498.86 0.00 0.368 0.442
Null (no covariates) 2 498.86 0.00 0.368 0.442
(cs) 3 500.95 2.09 0.130 0.442
(ss) 3 500.95 2.09 0.130 0.442
(obs) 6 507.45 8.58 0.005 0.442
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Parameter estimates

We developed parameter estimates of P̂a, proportion
of clusters detected, for each species and significant
covariates identified in Table 2. Table 3 provides para-
meter estimates for data truncation at 150 and 100 m,
i.e. 300 and 200 m wide transects respectively. For
300 m wide transects, P̂a estimates suggest that gener-
ally between 40 and 60% of alcid groups are detected,
apparently unrelated to size or conspicuousness of the
species. For the largest species, 69% of cormorants
were detected but surprisingly only 44% of gulls were
detected. P̂a estimates varied considerably among
years (murrelets, 0.393 to 0.587; cormorants, 0.604 to
0.903) and observers (murrelets, 0.228 to 0.625; guille-
mots, 0.377 to 0.803). For 200 m wide transects, P̂a esti-
mates increased by about 0.1 for most species but as
much as 0.2 for cormorants.

Sea state effects on g (0)

Comparison of cluster encounter rates of birds near
the transect line can provide some indication of sea
state effects on g(0). From 1429 km of transects (54 d),
22% (n = 29 d), 43% (n = 44), 29% (n = 32) and 6% (n =
14) were conducted during sea states 0, 1, 2, and 3
respectively. Sea state effects were variable among
species (Fig. 2). Encounter rates did not vary among
sea states for common murres (ANOVA: F3,115 = 0.679,
p = 0.567) or pelagic cormorants (F3,115 = 0.125, p =
0.945). Sea state did affect encounter rates for marbled
murrelets (F3,115 = 2.716, p = 0.048) with significant
post-hoc tests (Tukey’s HSD) showing higher en-
counter rates during sea state 0 (mean 3.93 ± 0.59 SE
clusters km–1) compared to sea state 2 (2.22 ± 0.32, p =
0.036) but not sea states 1 (2.65 ± 0.33, p = 0.132) or
3 (3.03 ± 0.70, p = 0.671). This suggests the potential for
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Table 3. Parameter estimates for detectability of seabirds surveyed using line transects.  P̂a estimates from program Distance indi-
cate the proportion of birds on the water detected for 150 and 100 m data truncation which corresponds to 300 and 200 m wide
strip transects respectively. Parameter estimates are provided only for covariates which were identified as important predictors in
the best fit models for each species (Table 2). Density estimates are not provided for individual observers because these values
are additive for higher levels (year or global model). Global  P̂a estimates are from the best fit models with covariates (Table 2) and 

global density estimates are calculated from the weighted means based on effort per year

150 m data truncation 100 m data truncation
Species and level No. of P̂a 95% CI Density estimate No. of P̂a 95% CI Density estimate

clusters (birds km–2) clusters (birds km–2)

Marbled murrelet
Global 57380 0.421 0.412–0.429 54.07 53690 0.529 0.519–0.540 58.81

2004 479 0.442 0.346–0.564 69.67 394 0.539 0.411–0.707 68.20
Obs 1 178 0.514 0.360–0.735 145 0.628 0.430–0.917
Obs 2 301 0.397 0.284–0.555 249 0.482 0.327–0.710

2005 22880 0.393 0.381–0.404 47.87 22700 0.548 0.527–0.570 50.33
Obs 1 809 0.439 0.417–0.461 799 0.628 0.593–0.665
Obs 3 494 0.228 0.209–0.250 494 0.330 0.297–0.368
Obs 4 985 0.417 0.417–0.461 977 0.616 0.588–0.644

2006 29710 0.587 0.568–0.607 48.03 27050 0.654 0.601–0.711 55.59
Obs 1 11450 0.535 0.506–0.566 10690 0.570 0.489–0.666
Obs 2 52 0.285 0.100–0.813 45 0.375 0.116–1.000
Obs 5 754 0.603 0.568–0.640 685 0.810 0.757–0.866
Obs 6 10200 0.625 0.591–0.661 906 0.714 0.624–0.816

Common murre
Global 941 0.451 0.422–0.483 7.37 891 0.537 0.478–0.604 8.54

Pelagic cormorant
Global 723 0.694 0.664–0.724 2.83 621 0.892 0.868–0.916 2.79

2005 441 0.604 0.569–0.641 4.02 409 0.847 0.815–0.880 3.98
2006 282 0.903 0.870–0.937 1.74 212 0.995 0.984–1.000 1.71

Rhinoceros auklet
Global 307 0.425 0.369–0.489 2.40 291 0.516 0.401–0.665 2.75

Pigeon guillemot
Global 202 0.465 0.414–0.522 1.09 187 0.602 0.541–0.671 1.13

Obs 1 92 0.474 0.407–0.552 87 0.642 0.562–0.734
Obs 3 19 0.257 0.169–0.392 19 0.339 0.225–0.510
Obs 4 34 0.377 0.284–0.499 34 0.544 0.423–0.699
Obs 5 13 0.513 0.332–0.792 11 0.542 0.327–0.899
Obs 6 44 0.803 0.697–0.923 36 1.000 0.941–1.000

Larus spp.
Global 129 0.442 0.277–0.705 10.90 108 0.564 0.345–0.921 11.42
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g (0) < 1 for murrelets, but not murres or cormorants,
when sea state increases.

DISCUSSION

Detection of seabirds

Reliable assessment of animal densities is an integral
part of wildlife research (Thompson 2002, Braun 2005).
Accurate density estimates allow for robust population
estimations and population trend analysis which is
essential for the conservation and management of
threatened marine species (Slooten et al. 2004, Gomez
de Segura et al. 2006, Slooten et al. 2006). Although it
has long been recognized that the detectability of
seabirds decreases with distance from a transect line
(Dixon 1977), few seabird studies have tried to quantify
this. Previous studies have developed methods to
account for detectability of birds in flight (e.g. Spear et
al. 2004, Hyrenbach et al. 2007). Our study provides a
comprehensive analysis of detectability of birds on the
water.

Our results suggest that, even within 150 m of the
transect line in relatively calm conditions, anywhere
between 25 and 90% of bird groups on the water may
be detected, depending on species, year and/or ob-
server. Marbled murrelets were the smallest species
evaluated and estimates of detection probability among
years ranged from 39 to 59% with 150 m truncation
and 54 to 65% with 100 m truncation. Becker et al.
(1997) reported 49 to 66 m effective strip widths from
160 m truncated data which convert into 31 to 41%
detection. With 120 m data truncation, Peery et al.
(2006) had detection probabilities ranging from 44 to
55% (calculated from f(0) estimates in their Appendix

Table 2). Raphael et al. (2007) had detection probabili-
ties of 55% (175 m truncation; calculated from f(0) esti-
mates in their Appendix 4). Therefore, across multiple
studies, marbled murrelet detection probabilities appear
to vary considerably between 40 and 65%, partially
depending on transect width.

Conspicuousness can affect the detection and count-
ing of animals along transects (Ryan & Cooper 1989,
Spear et al. 2004). Marine mammal surveys frequently
incorporate correction factors for different species
(Forney & Barlow 1998), but there are few published
data on detection probabilities for seabirds other than
marbled murrelets. Hyrenbach et al. (2001) used dis-
tance sampling to count shearwater carcasses for mor-
tality estimates and found effective strip widths of 42 to
55 m, which are comparable to estimates for live mur-
relets (Becker et al. 1997). Although several studies
have recommended the use of distance sampling for
seabird transects (Hyrenbach et al. 2001, Camphuysen
et al. 2004, Huettmann & Diamond 2006), we found no
published detection functions for other seabird spe-
cies. Our data demonstrate that detectability varied
among species, though most alcids showed similar de-
tection functions. Pelagic cormorants were detectable
over much greater distances likely owing to their size
and height. Nevertheless, despite the apparent con-
spicuousness of cormorants, year was still an important
covariate when modeling detection functions, suggest-
ing that detectability is not perfect even for this rela-
tively large species. Strip-transects also show species-
specific differences in seabird detectability (Hyrenbach
et al. 2007).

Effects of covariates

Systematic biases in counting procedures can be an
important source of error in estimating bird abundance
(Thompson 2002) but inclusion of covariates can mini-
mize the heterogeneity in detection probabilities (Mar-
ques & Buckland 2003). In our study, we assessed vari-
ability in detection functions with the inclusion several
covariates: year, observer, sea state and cluster size.

Year was an important covariate for murrelets and
cormorants but not murres. Likewise, other studies
have observed differences in detection functions among
years for marbled murrelets (Becker et al. 1997, Peery
et al. 2004, 2006). The significance of year as a covari-
ate could be explained by annual changes in bird
abundance and distribution in the study area. Chang-
ing distribution of prey from one year to the next can
significantly alter the distribution and aggregation of
seabirds (Davoren 2000). In years when seabirds are
more dispersed or in smaller groups, they may be
harder to detect and thus the detection functions may
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Fig. 2. Uria aalge, Brachyramphus marmoratus, and Phalacro-
corax pelagicus. Effects of Beaufort sea state on mean en-
counter rate of bird clusters along a transect line. Includes
only bird clusters near the transect line (≤ 60 m for murres and 

murrelets; ≤ 80 m for cormorants). Bars indicate 95% CI
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differ. However, this effect should have been ac-
counted for by the cluster size covariate, thus, the year
effect may also be picking up differences in covariates
that were not measured or included in the analysis.
The detectability of birds during transects may also
decrease as a function of decreasing bird density
(Ostrand et al. 1998). In our study, murrelet and cor-
morant densities varied annually, but high density
years did not necessarily result in higher detectability
(Table 3).

Differences among observers’ abilities to detect
birds in vessel-based seabird surveys may sometimes
be large (van der Meer & Camphuysen 1996). Ob-
server biases may result from differences in observer’s
visual acuity, attentiveness and experience (Ralph &
Scott 1981, Laake et al. 1997). Observers may even
show differences in detecting birds on the transect
line, g(0), where birds should be easiest to detect
(Evans Mack et al. 2002). Observer was an important
covariate in another murrelet study (Peery et al. 2006)
and for 2 species in this study. These biases appear to
be unrelated to experience in our study since P̂a esti-
mates for inexperienced observers (Obs 3, 4, 5) over-
lapped with those of experienced observers (3+ yrs
experience: Obs 1, 2, 6). Despite training, observer
biases may have resulted from general over- or under-
estimation of distances by particular individuals (Obs
3, lowest P̂a estimates; Obs 6 highest P̂a estimates).
However, if measurement error was the primary
source of observer bias, we would have expected
observer to be a significant covariate for all species;
this was not the case. Observer 3 also had the lowest
encounter rates (no. of clusters, Table 3), which is
consistent with lower detection rates. Thus it is likely
that there are real differences in the way observers
searched or were able to identify birds. Observer dif-
ferences are quite real and coping with them is one of
the advantages of distance sampling.

Winds and associated waves can affect observers’
abilities to detect animals at sea. This may be particu-
larly true for smaller cryptic species such as marine
birds (Evans Mack et al. 2002, Peery et al. 2006) or tur-
tles (Beavers & Ramsey 1998). Surprisingly, sea state
was not included in the best models for any species in
our study. The lack of significance for sea state as a
covariate simply means that the proportion of birds
detected P̂a does not change. This suggests that even
when fewer birds overall may be detected in poor
viewing (e.g. 10 birds) vs. good viewing conditions
(20 birds), the proportion of birds detected near the
transect line vs. farther from the transect line could
remain the same (9:1 during poor conditions vs. 18:2
during good viewing conditions). Thus P̂a may remain
unaffected by sea state, but g(0) can still decrease with
increased sea state.

This study was not designed explicitly to provide esti-
mates of g(0). Alternatively, comparisons of bird densi-
ties near the transect line provide some evidence of
how g(0) may vary with sea state. Densities of murrelets
encountered on transects decreased for sea states 2 to 3
compared to sea states 0 to 1 in California (Becker et al.
1997). Similarly, for murrelets, we observed decreased
encounter rates in sea states >0, though there was no
statistical difference between the calmest conditions (0)
and the roughest (3). Increased sea states may affect
the behaviour of birds making them less detectable:
higher sea state increases dive bout duration of mur-
relets (Jodice & Collopy 1999) or the proportion of time
spent at sea for species that frequently loaf or roost on
land (cormorants, gulls, guillemots). If the latter is true,
or birds move away from the study area during rough
conditions, then using encounter rates to test g(0) is
inappropriate. Other factors, such as observer experi-
ence or animal group size, may also cause g(0) < 1
(Laake et al. 1997, Evans Mack et al. 2002). More effort
should be placed on validating the critical assumption
g(0) = 1 for seabirds. Our surveys sampled only rela-
tively calm seas (Beaufort scale ≤3) and it is likely that
sea state would greatly affect detectability in rougher
seas. Larger vessels frequently continue surveys in
Beaufort sea-states > 3. The multiple observer ap-
proach used by Evans Mack et al. (2002) is likely the
best way to test assumptions of g(0) under a variety of
conditions.

Implications for at sea surveys

Estimates of P̂a (Table 3)  are potentially useful as
correction factors for fixed-width strip transects. How-
ever, we do not recommend that they be used as such
because these estimates varied considerably among
years and observers and therefore are not directly
transferable to other studies. Moreover, our surveys
were conducted from a slow-moving small boat and
detectability will likely vary with boat size (observer
height above sea) and speed. Boat size and speed may
also affect the extent to which birds are repelled (or
attracted) and the distance at which this might happen
(Hyrenbach 2001, Hyrenbach et al. 2007, Bellefleur
et al. 2009). Furthermore, correction factors are not
directly applicable to all boat transect surveys because
environmental factors will differ among regions and
habitat types. We tested only effects of sea state, but
wind direction, sun glare or water clarity are also
known to affect detectability (Briggs & Hunt 1981,
Hyrenbach et al. 2001, Evans Mack et al. 2002).

Parameter estimates for 150 m truncation (300 m
strip sampled on both sides of the vessel) are not ap-
plicable to surveys that follow the Tasker et al. (1984)
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protocols for 300 m strip transects which record birds
only on one side of the vessel. Birds, such as alcids, that
spend a considerable amount of time on the water
(Tremblay et al. 2003) could be substantially underes-
timated with single-sided 300 m wide transects. In this
study, <4% of all alcids and <10% of gulls and cor-
morants were detected between 150 and 300 m (sam-
ple sizes in Table 1) suggesting extremely low
detectability in this distance band. For flying birds, a
300 m, or wider, single-sided strip may be suitable for
many species (Hyrenbach et al. 2007), but smaller and
more cryptic species are underestimated with standard
strip transects (Spear et al. 2004).

Marine mammal researchers routinely use distance
sampling when estimating densities and population
size (Forcada et al. 2004, Slooten et al. 2006). We rec-
ognize 3 main reasons why seabird biologists have
been reluctant to incorporate distance sampling in sur-
vey protocols. (1) Although accurate density estimation
is worthwhile, trend analysis based on long-term
datasets is also important. Many long-term seabird
survey programs have used fixed-width transects (e.g.
Pyle 2007) and there are concerns over comparability
between methods. Implementing distance sampling in
the field still allows one to analyze the data as strip
transects (of any desired width), but the opposite is not
true. Nevertheless, it is possible that observers using
distance sampling might inadvertently focus greater
attention on birds near the vessel given the strong
emphasis in distance sampling of having g(0) = 1,
whereas observers doing strip transects might be more
likely to see distant birds. This potential bias in ob-
server effect needs to be more fully investigated if data
from the 2 methods are to be compared or combined.

(2) Distance sampling techniques are more readily
applicable to birds on the water than to birds in flight.
This is particularly important for surveys of pelagic
species that spend a considerable amount of time on
the wing. A variety of techniques are employed to
assess densities of birds in flight (e.g. Tasker et al.
1984, Spear et al. 2004, Hyrenbach et al. 2007). Appli-
cation of distance sampling to birds in flight is a major
obstacle that must be addressed.

(3) Distance sampling is effort intensive and seabirds
are frequently encountered in patches of high densi-
ties, making recording of distances to individual birds/
flocks difficult. Experienced observers have claimed
that true distance sampling techniques are not practi-
cal to record seabirds at sea; e.g. Hyrenbach et al.
(2001, p 15) commented that distance sampling ‘should
be employed only when seabirds are sparse and non-
mobile, and enough observers are available to esti-
mate the perpendicular ranges to sightings and to
monitor birds directly on the track’. We agree that
recording exact distance to all groups is not practical in

many situations. Instead, some seabird programs use
grouped (binned) distances rather than ungrouped
(exact) distances for bird detection (Komdeur et al.
1992, Camphuysen et al. 2004). Yet in situations where
birds occur in extremely high densities (e.g. rafts of
shearwaters in Alaska), the errors associated with dis-
tance sampling (group size and distance estimation)
may outweigh the uncertainty associated with strip
transects. In these high density situations, narrow strip
transects, which minimize detectability bias and allow
for more precise counting of many individuals, may
provide the most accurate density estimates.

CONCLUSIONS

Our study shows clearly that standard strip-transect
methods underestimate densities of birds on the water.
Based on our results, we make the following conclu-
sions and recommendations:
• The assumption of perfect detection within a strip-

transect is very unlikely unless the strip is very
narrow (e.g. 50 to 100 m).

• Because year and observer were important predic-
tors for some species, a single species-specific correc-
tion factor is not applicable to all surveys. Collection
of distance data can be used to estimate survey-
specific detection probability.

• Observer differences in this study appear to be
related to observer search and detection ability
rather than measurement error. Distance sampling is
only useful if distances are measured accurately,
thus, observer training and testing is important.

• Distance sampling offers the ability to identify and
correct for detectability biases which may include
weather, species, observers and platform types.
Additionally we identify 4 important considerations

that must be addressed for widespread use of distance
sampling with seabird surveys:
• Appropriate methods should be developed to apply

distance sampling with birds in flight.
• For some species, g(0) may be <1 and is likely

affected by weather conditions, platform types, and
avoidance (or attraction) behaviour of birds. It will be
important to conduct independent observer experi-
ments to evaluate g(0).

• Techniques must be amenable to situations where
birds occur in very high densities.

• Distance sampling methods should ensure that
results are compatible with long-term survey pro-
grams using strip transects.
Distance sampling offers the ability to correct for

important survey biases among platforms, species and
regions which will help increase the precision of popu-
lation estimates and make survey results comparable
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among study areas. This is crucial for merging data
sets and findings globally. Surveys that do not account
for detectability issues in density estimation can be
biased, which may interfere with population assess-
ment (Norvell et al. 2003). Studies analyzing popula-
tion trends or comparing the distributions of birds rela-
tive to biophysical landscapes could, arguably, work
adequately with relative abundance indices (strip tran-
sects) rather than distance sampling density estimates.
Nevertheless, the use of distance sampling to correct
for detectability issues should increase the accuracy
and precision of all transect-based studies of seabirds.
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